Eberhard Karls Universitat Tiibingen
Mathematisch-Naturwissenschaftliche Fakultat
Wilhelm-Schickard-Institut fiir Informatik

Bachelor Thesis

Designing a Haskell Library for Interdependency Testing

Lukas Probst

31.05.2023

Reviewers

Prof. Dr. Klaus Ostermann
Wilhelm-Schickard-Institut fiir Informatik

Universitat Tubingen

Ingo Skupin
Wilhelm-Schickard-Institut fiir Informatik

Universitat Tubingen

Lukas Probst:

Designing a Haskell Library for Interdependency Testing
Bachelor Thesis

Eberhard Karls Universitat Tibingen

Thesis period: 01.03.2023 - 31.05.2023

Designing a Haskell Library for Interdependency Testing i

ABSTRACT

This thesis is proposing a new Haskell library for interdependency testing. Compiler test suites or
other projects may benefit from the ability to model dependencies in an intuitive way. Two types
of dependencies could be identified. Horizontal dependencies exist between different tests. Vertical
dependencies exist between different instances of the same test. Disregarding these dependencies
may lead to redundant and inefficient testing. A solution to effectively handle this problem is
presented in the form of a Haskell library that developers can use to easily implement dependent
testing in their own projects. It utilizes the Haskell testing library Hspec, and a custom monad
stack designed for testing with dependencies. The resulting library was implemented in the Duo
language project of the chair of programming languages at the Wilhelm-Schickard-Institute of the
University of Tubingen.

ZUSAMMENFASSUNG

In dieser Arbeit wird eine neue Haskell-Bibliothek fiir Interdependenztests vorgestellt. Compiler-
Testsuiten, oder auch andere Projekte, konnten davon profitieren, Abhéngigkeiten zwischen Tester-
gebnissen zu modellieren. Zwei Arten von Abhangigkeiten konnten identifiziert werden. Horizon-
tale Abhéngigkeiten existieren zwischen verschiedenen Tests. Vertikale Abhéngigkeiten existieren
zwischen verschiedenen Instanzen desselben Tests. Das Ignorieren solcher Abhéngigkeiten zieht
redundante und ineffiziente Test mit sich. Eine Losung wird in Form einer Haskell-Bibliothek
vorgestellt, mit dem Entwickler auf einfache Art und Weise, abhangige Tests in ihre eigenen
Projekte implementieren kénnen. Es nutzt die Haskell-Testbibliothek Hspec und einen benutzer-
definierten Monad-Stack, der fiir Tests mit Abhangigkeiten entwickelt wurde. Die resultierende
Bibliothek wurde im Duo Programmiersprachprojekt des Lehrstuhls fiir Programmiersprachen am
Wilhelm-Schickard-Institut der Universitat Tiibingen erstmals implementiert.

Designing a Haskell Library for Interdependency Testing iii

ACKNOWLEDGEMENTS
A very big thank you to Ingo Skupin, my supervisor, who tirelessly answered all my questions and
was incredibly helpful along the entirety of the thesis.

Designing a Haskell Library for Interdependency Testing

1
2
2.1
2.2
3
3.1
3.2
33
3.4
3.5
4
4.1
4.2
4.3
5

CONTENTS

Introduction
Preliminaries
Monads in Haskell
Hspec
Main Ideas
A Testing Monad
Testing Functions
Different Types of Dependencies
Maybe as Results
Existential Hiding of Test Results
Implementation
The TestM Monad
How to Run Tests
Testing with Dependency
Discussion and Outlook

References

O 00 0 QN U UT WD =

e T o T G e S e
O NN = OO

Designing a Haskell Library for Interdependency Testing 1

1 INTRODUCTION

“Compilers translate programs from high-level languages into representations executable by the
computer”, say [Kossatchev and Posypkin 2005]. Most of the time, this translation is either into
machine code, or into another programming language, a so-called meta language. This translation
is called compiling. As compilers need to be able to handle every possible program that could be
written in their language, they are very big and complex pieces of software, according to [Chen et al.
2020]. To make sure that they compile code correctly, they need to be rigorously and thoroughly
tested. As one can imagine, testing such big pieces of software is no easy task, and more often than
not a lot of effort is put into it. In fact, most compiler projects have their own subfolders just for
testing purposes, a so-called test suite. It is in the interest of developers to keep creating new tests
that check the functionality of their compiler. As test suites often run hundreds to thousands of
tests, it is also essential to optimize their internal processes for minimal runtime, as well as clarity
and readability when displaying the tests.

The goal of this thesis is to implement a runtime optimization, while also providing increased
control to the user of the library. Consider the following example: In a compiler test suite we want
to read files of the compilers programming language. Then, after parsing the content of those files
into usable data formats, we perform different tests over them. We could, for example, first test
whether the input file could be parsed at all, and in a second test whether that parse can also be
type checked. Finally, in a third test, we pretty-print this type checked file and test whether the
generated pretty-print can be successfully parsed and type checked again. Before this second type
check test can be performed, a parse of the file must be available. And when testing whether a
pretty-print can be type checked again, the information whether the file could be type checked the
first time, has to be acquired beforehand. This means there are interdependencies between these
tests. In this example, we use a collection of input files and run tests over them. However, no test
will use multiple input files at the same time. Rather, we want each test to be executed on each file
independently. It can be observed, that the parse, the type check calculated from it, and also it’s
pretty-print can be traced back to the same source. Namely, the initial input file. We will call such
an isolated, independent stream of test results with a common root, a test instance.

Regularly, we observe such dependencies between tests. The success of one test might be
dependent on the successes of one or even multiple tests that ran before it, like in the example. A
naively implemented test suite might run all of those tests, regardless of whether those dependencies
exist. We, however, want to use this observation to optimize the testing process. After all, if we
already know that a test will fail due to unsuccessful dependencies, there is no point in running it.
In this thesis we will call this phenomenon, where the success of certain tests depends on successful
instances of other tests, horizontal dependencies.

Orthogonal to horizontal dependencies, there might be tests which rely on the success of other
instances of the same test to be successful. Say, for example, we want to test whether a file type
checks and in the first few lines of the file contain import statements. Import statements import
other files. The success of this test is dependent on whether the imported files could be type checked
as well. Instead of type checking all the imported files again for every instance of this test, it might
be more effective to remember which files have been (un)successfully type checked. We can also
predict, that the current test instance will fail if one of the imports does not type check in the first
place, and immediately abort in this case. We will call this type of dependency, where the success
of a test input is dependent on another instance of the same test, vertical dependencies.

The different types of dependencies can be seen in fig. 1. On the left, horizontal dependencies

t1 t2 t2

=E BB
[——

Fig. 1. A visualization of horizontal dependencies on the left and vertical dependencies on the right

between the same instances in the tests t1 and t2 can be seen. The test values x and b, as well as y
and c are of the same instance. The arrows symbolize that test value b can only be successful, if x
was successful. Similarly, ¢ can only succeed, if y succeeded. On the right side are vertical depen-
dencies between different instances of the tests t1 and t2. Here, the success of ¢ is dependent on
another instance of t1, namely b, which is again dependent on a. Similarly, y is dependent on x. If all
dependencies for a test value t were successful, we will say that the dependencies for t were fulfilled.

The programming language project Duo’, in which this library will first be implemented, so
far uses a linear compiler test-suite. With that we mean that tests which could be pruned away,
due to horizontal or vertical dependencies, are not handled in any meaningful way. These failing
test instances are also propagated throughout the testing process, which clutters the terminal
output, making it hard to pinpoint the cause of the test failures. In this thesis we will design a
Haskell library that allows users to model interdependent tests with intuitive API style functions.
To implement the testing functionalities, the Haskell HSpec library is used to perform grouped
tests.

Ultimately, the aim is to create a closed Haskell library which can be flexibly used in any project
that may require dependent testing.

This thesis is structured as follows:

e In section 2 we will explain the theoretical basics.

e In section 3 we will present the main ideas.

e In section 4 we describe our approach to the implementation.

e In section 5 we conclude and discuss which ideas were not implemented as well as possible
future features of the library.

2 PRELIMINARIES
2.1 Monads in Haskell

As the implementation of this library will utilize a custom monad, it is essential to understand
how monads work in Haskell. In essence, monads are type constructors, which are used to chain
commands in a consistent and predictable way. They also enable the use of side effects, like input

Ihttps://github.com/duo-lang/duo-lang

https://github.com/duo-lang/duo-lang
https://github.com/duo-lang/duo-lang

o

o

Designing a Haskell Library for Interdependency Testing 3

sequence :: 10 ()

sequence
_ > 2+ 5>=s ->s / 2>= half -> print half >>=

- -> print s

(a) A sequence of bind operations in an 1O monad.

sequence :: I0 ()

sequence = do
s<-2+5
half <- s / 2
print half
print s

(b) The same 10 monad sequence in do-notation. Note that all expressions are evaluated in a top-down order.

Fig. 2. A monadic sequence in bind-notation and in do-notation

and output operations, while keeping the pure nature of a functional programming language like
Haskell. To create a monad, one needs to define two functions for it: The pure function defines how
a value can be put inside this monad in the simplest way. The bind function, denoted as >>= defines
how this monad chains operations together.

There are a few monads already implemented in the standard Haskell library, two of which are
of importance to this thesis. One of them is the Reader monad. The Reader monad enables the user
to pass an arbitrary value when creating an instance it. This value can then be read out at any point
in the monad. In our custom monad we will utilize this to be able to have a global configuration.
Inside the monad, at any point, the ask function can be used, to get access to the value written in
the reader monad.

The second monad that holds significance for us is the State monad. Like the Reader monad, it
accepts an arbitrary value during construction, called the state. This value can be accessed inside
the monad via the get function. Unlike the Reader monad though, the state can be manipulated at
runtime via the put function. We will use the reader monad to keep track of test results.

The arguably most important feature of monads in Haskell is the so-called do-notation. It allows
programmers to use an almost iterative programming style in a language that originally only
supports declarative programming, as seen in fig. 2. It depicts an example of the same sequence of
operations, one as a chain of bind operations, the other in do-notation. One can observe, that the
evaluation follows a strict order, and binds the result of a function as a value to give to the next
function. It is also notable, that we can again use the variable s later in the sequence, even long
after binding it. The iterative style of the do-notation enables us to not only force an evaluation
order, but also make it clearly visible, as statements are evaluated from the top down. Binding
“variables”, which are in reality only partial results of the whole bind-chain, is done in this iterative
“one line after the other” fashion.

It is possible to unify the properties of different, already existing monads by utilizing monad
transformers. Monad transformers define a way in which a monad can be “stacked” on another
monad. For this purpose the type signature of a monad transformer expects a monad m to be passed
and embeds the solution of its operations in the constructor of m. This way, we can stack an arbitrary

1 main :: 10 (O

> main = hspec $ do

3 describe "Prelude" $ do

4 describe "read" $ do

5 it "can parse integers" $ do

6 read "10" “shouldBe™ (10 :: Int)

7

8 describe "head" $ do

9 it "returns the first element of a list" $ do
10 head [23 ..] “shouldBe™ 23

Fig. 3. An example usage of the Hspec library, grouping together 2 tests and running them. Source: [HSpec
2011]

amount of monads on top of each other. Like with monads, many monad transformers are already
implemented in Haskell, for example the reader monad transformer ReaderT and the state monad
transformer StateT.

2.2 Hspec

Hspec is a testing framework for Haskell. It works by creating and passing around values of the
type Spec. With Hspec it is very easy to group tests together. In fig. 3 two tests are grouped under
the description “Prelude”. Both get their own descriptions, “read” and “head” respectively. With the
it function, in combination with shouldBe, both tests create a value of type Spec. Also note how
both tests are put in a monadic sequence via the do-notation and therefore will be executed after
each other. In the end, the tests are executed by using hspec on the resulting Spec.

The functions of Hspec all use and return a monadic type SpecWith a. However, for developers
using the library, the type Spec can be used as a substitute without type argument. A Spec can
be sequenced with other Spec, and they contain tests that can be executed. The most important
function to create a Spec is the function

it :: String -> Expectation -> SpecWith (Arg Expectation)

that accepts a String description and an Expectation. It creates a single unit test in conjunction
with

{shouldBe :: forall a. (HasCallStack, Show a, Eq a) => a -> a -> Expectation}

that compares two values and provides such an Expectation. Via the function

{describe :: forall a. HasCallStack => String -> SpecWith a -> SpecWith a}

unit tests can be grouped together under a shared description. There is also a pending function,
which can be used to implement pending tests. We utilize pending to mark tests that did not have
their dependencies fulfilled.

The functions it, describe and pending all return Spec values. To run them and display the results
on the terminal, the function hspec may be called inside an IO monad. It is important to underline,
that a Spec only contains instruction of how a test is executed, and only the hspec function creates
a visible output for the user. After the tests run, hspec returns an empty IO value. This means that
we are unable to use any of the results that we might calculate, the Hspec library is solely made to
run tests and display their results.

[N}

w

&

Designing a Haskell Library for Interdependency Testing 5

testingPipeline :: SomeTestingMonad
testingPipeline = do
resultl <- runTest "description” testValues [] func]l
result2 <- runTest "descr" resultl [] func2
result3 <- runTest "descr" testValues [resultl, result2] func3

Fig. 4. An example test specification running three tests, and displaying the use of horizontal dependencies,
in a monadic style.

3 MAIN IDEAS
3.1 A Testing Monad

The central goal of this thesis is to implement a simple way to run dependent tests. We want
to model dependencies that enable us to skip certain tests for which we can predict a failure.
For horizontal dependencies this means to make sure that previous tests on this instance ran
successfully. To enforce that the dependencies of tests are run before them, we decided to take a
monadic approach. The basic idea is shown in fig. 4.

In the testing monad, tests should be called by a test running function. In fig. 4 this is runTest.
This function will perform tests over a list of to-test values, which are values that will each be tested
by a given testing function. There are four arguments passed to runTest.

Firstly, there is a description in form of a String. It will be used to group the single tests together
under a common description, i.e. it will be the argument passed to the describe function of the
Hspec library.

Secondly, a list of to-test values is passed. In the example, this list is called testvalues. Every
to-test value is an instance of this test, meaning that the testing function will be applied to each
of the to-test values individually. In section 1 we introduced an example that tested whether files
could be parsed. In that case the list of to-test values would be a list of input files, or a list of parses.

Next, the function should accept dependencies. For now, we will focus on horizontal dependencies,
and talk about vertical dependencies later on. In fig. 4, they are passed as a list of previous test
results. If the list is empty, there are no horizontal dependencies for this test. Only in the third call
of testRun there are horizontal dependencies, namely result1 and result2.

The last argument passed to testRun is the testing function, in the first call that is func1. These
testing functions are not included in this library and need to be defined by a user. The parsing test
and the type check test from section 1 would be examples for such testing functions. They are
supposed to accept a to-test value and return an output containing information about result of the
test. The plan is, that runTest will run a testing function over every element of the list of to-test
values.

After the first tests are evaluated, we want to store the results in a variable. In the example,
the first results are stored in resultl. Afterwards, we run a second test with a second testing
function func2. As to-test values we now pass the results of the first test, result1. This means
that all tests that failed in result1 will not be tested in this call of runTest. Even though we
did not pass any horizontal dependencies explicitly, by reusing test results, we implicitly create
horizontal dependencies to the previous test run. In the third call of runTest we perform the testing
function func3 over our initial to-test values testValues. This time, result1 and result2 are used
as horizontal dependencies. In other words, the testing function func3 will test the values of the
initial testValues. However, only instances that were successful in the first two test calls of runTest

will be considered. This means that, if the horizontal dependency for an instance at index i was
not fulfilled, the to-test value at index i is not applied to the testing function.

Especially in do-notation it is visible, how this monadic approach forces the evaluation of de-
pendencies before their dependent. Results can be reused as to-test values or passed as horizontal
dependencies to a new test. To reuse them we have to first bind them to a name. Whether the
results become to-test values or dependencies for new tests, by doing so, it is guaranteed, that they
were evaluated before being used.

Ideally, the test results are not only available locally, where a result variable is created, but at any
point inside the monad. So, to continue in our monadic approach, we want to save the results in a
state, and retrieve them by an index. This way the results from a call of our test running function
will only be a pointer to some results in the state. The Spec that are created from running our tests
should also be saved in one central place. This will also happen in the state. This way, all results
can be retrieved from the state at once, with one call of the get function.

We also want to be able to give the developer the ability to decide whether they, for example,
want to display tests that were not executed due to failing dependencies, or not. There are different
methods to implement this, but with extensibility for more configuration options in mind, a Reader
monad could be the best option here. As we need the capabilities of a Reader monad for configuration,
and the capabilities of a state monad for storing results, we use a monad transformer to unify these
properties in a single monad. As mentioned, transformers assist in building monads on top of each
other. This means that they use a value of a given type and a monad to construct a new monadic
value. In the TestM Monad, we use two transformers in order to be able to stack yet another monad
of the users choosing. This design was picked specifically with IO operations in mind. In the Duo
project’s test suite, it is necessary to read files for the parse test. Reading files is an IO operation,
and Haskell allows such operations only inside an IO monad, to remain pure. With this design,
testing functions can take the form of test :: MonadI0 m =>a -> m b. Therefore, IO can be used
without leading to complications.

In the rest of this section, we will discuss the different aspects that will play together in this
testing monad. First, let’s talk about the testing functions that we want to use on our to-test values.

3.2 Testing Functions

Like discussed in section 2.2, Hspec does not give us a possibility to continue working with test
results in any way. But, as we want to model dependencies between tests, we do not only need to be
able to assess that a certain test was successful, but also to use its result in further calculations. Here
we have to draw an important line between the results of a test, i.e. the result of the calculations
done within a testing function, and the success of a test, i.e. whether it produces the expected result
and therefore did not fail. If we read and parse a file for our parsing test, and in the next step try to
type check it, it would be a waste of computing resources to do the first two steps again. Likewise,
if the parsing test was not successful we do not want to repeat a parse that did not work in the first
place.

To achieve this, we need functions that return both, a result with the type Maybe b, and a
Hspec executable Spec. This will be in the form of a tuple. As mentioned, we also give the user
a possibility to embed an additional monad in the monad stack. This could be an IO monad, but
does not have to be. We want the testing functions to be run inside this monad m. If they take an
argument with type a, they have the type signature Monad m =>a -> m (Maybe b, Spec). This
type of functions we will call testing function. The testing functions are not part of this library, but
supposed to be user-defined. To be compatible with this library they need to follow the described
type signature. Figure 5 shows a testing function. This particular example tests whether a given

Designing a Haskell Library for Interdependency Testing 7

1 biggerThan5 :: Monad m => Int -> m (Maybe Int, Spec)
> biggerThan5 n = let success = n > 5

3 spec = it (show n ++ "isbigger than5") $ success ~shouldBe™ True
4 in if success

5 then return (Just n, spec)

6 else return (Nothing, spec)

Fig. 5. An example for a testing function, testing whether a value is bigger than five

Int value is bigger than five. First, it is determined whether the test was successful, by comparing
the Int. A Spec is created by using the it function on an Expectation. The Expectation here is
success ~shouldBe™ True. Then, depending on whether the test was successful, either the number
wrapped in a Just or a Nothing is returned, together with the test’s Spec.

The result of this function is the Int. In this case we did not calculate a new value but just
returned the input. However, as the design of these functions is left to the user, the test result
could be calculated and the success determined by the result of this calculation. The success of the
testing function is indicated by giving the result the type Maybe b. Only if a value wrapped in a
Just constructor is returned, the test was successful. If a Nothing is returned, the test failed. The
purpose of the Spec is to generate a test output that can be displayed on the terminal.

As one can see, the success of the test was determined on the premise n > 5. Because this
information is needed to create the expectation, as well as to determine whether we return a success
or a failure, to reduce redundancy it is practical to bind it to a name.

3.3 Different Types of Dependencies

Dependencies may exist between instances of different tests. Let’s take an example out of the Duo
project’s test suite. When the test suite is started, a list of file paths is generated. In the parse
test, these duo files are then read, and their contents are parsed into a concrete syntax trees (CST),
a tree structuration of commands. All other tests that follow this, require CSTs, or a product of
transforming CSTs, as to-test values. Take for example its immediate successor, the type check
test. It takes the CST of a file as an argument and tests whether the tree can be assigned a type,
constructing a typed syntax tree (TST). Because the type check test requires a CST as argument,
without a successfully parsed file this type check can never be successful. The same is true for all
other tests, that also require a CST of this instance as input, as well as all tests that require a TST
of this instance.

These horizontal dependencies allow us to effectively prune away the tests, that depend on the
success of a preceding test of the same instance. Our monadic approach already enforces that all
horizontal dependencies are run before the current test. By using lists of test results we ensure that
the indices of these results are always the same for the same instance. This means, that if the input
file of the parse test in our example had index i, the type check test result for this instance will also
have the index i in the list of results of the type check test. Horizontal dependencies are defined in
the context of those indices. In general, a certain index in such a list of test results always equals
the index of a to-test value in the original list.

In other words, imagine a user introduces a list of to-test values [1,2,3] that, after a certain
amount of tests, arrived at the list of results ["foo", "bar", "baz"]. By our design, it is always true,
however many tests ran between these two lists, the "foo" value is of the same instance as 1, i.e.
the chain of tests, that had 1 as original input, now arrived at the result "foo". The same is the case
for 2 and "bar", and 3 and "baz", for every index of these two lists and for all list of test results that

were intermediate results between them.

Dependencies may also exist between instances of the same test. To explain this phenomenon,
we’ll use the example from the Duo project’s test suite again. When we want to run the type check
test on a CST, there might be some imports in the first few lines of code. As we assume that all
imports will be used in the file, if one import would fail the type check test, the current file will
certainly also fail it. If we collect these vertical dependencies before testing the current file, and run
the same test on them, it is possible to prune away unnecessary redundancy.

Imports are the only vertical dependency we observed in the test suite of the Duo project. But
any algorithm with a divide and conquer approach, for example, could use vertical dependencies
as verification of its correctness. A simple example for this could be merge sort. This may not be
a particularly practical example, as merge sort is very well documented, however, it accurately
describes a vertical dependency approach to testing. Merge sort recursively splits a list in two until
there are only single item lists remaining. It then unifies these partial problems again, producing
correct partial solutions for every depth of the recursion.

To now verify that merge sort was implemented correctly, i.e. sorts both parts of a split list in
the correct order, we can use vertical dependencies. Say, for example, our list is [3,2,4,1], then
we could formulate a vertical dependency stating that merge sort only works correctly if the lists
[3,2] and [4,1] are sorted correctly. Moreover, we could define a function that just splits a list in
two halves, and use this function as a vertical dependency every time we test whether merge sort
works. Then, during testing, we make sure that all the results of this function, in this example the
halves of this list, return successful test results. Only in this case we proceed to run the test over
the whole list. This dependency is recursive, meaning that the halved lists also will be halved and
their respective halves tested before them, and so on. We want to use vertical dependencies exactly
in this way. As functions that calculate one or multiple dependencies from a to-test value. These
dependencies are then required to pass this test beforehand.

It is up to the user of this library to determine which dependencies a test has, as well as declaring
horizontal dependencies, and defining functions that calculate vertical dependencies. Now that we
discussed how dependencies will be implemented, let’s take a look on how we treat test results
depending on their success.

3.4 Maybe as Results

As we have to assume that some tests fail, we have to think about how we handle successful and
failed tests. If a test succeeds, we want to keep the information that it was successful, as well as the
result. If it failed, we don’t need its result, or there might not even be one. But, we want to keep
the information that it failed, because test failures are propagated through dependencies. Maybe
provides us with exactly this functionality.

Maybe is an implemented monad in Haskell. Maybe a constructs us a type that is either Nothing,
which is a constructor with no argument, or Just a, which is a constructor with one argument that
has to have the type a. As Maybe is a monad, and all monads implement Functor, we can apply
the function fmap :: Functor f =>(a -> b) -> f a -> f b to a value with the type Maybe a, like
in fig. 6. For Maybe a typed values, fmap behaves in a way that it applies a Function only to the
values wrapped in a Just, and passes a Nothing otherwise.

Successful tests produce a Just b as result, failed tests produce a Nothing. This enables us to
pattern match whether a test was successful without needing to know the type of the result.

[N}

w

&

N}

Designing a Haskell Library for Interdependency Testing 9

fmap (fmap (* 2)) [Just 1, Nothing, Just 3]
:> [Just 2, Nothing, Just 6]

Fig. 6. An example usage of fmap over a list of Maybe Int values. The fmap is applied twice, once to the list
and once to the Maybes.

data TestResult = forall a. TestResult a

hidden :: TestResult
hidden = TestResult 6

Fig. 7. Creating an existential type TestResult.

listOfValues :: [TestResult]
listOfValues = [TestResult 6, TestResult "foo", TestResult True]

Fig. 8. The existential wrapper now allows us to create lists, in which we can put values of different types.

3.5 Existential Hiding of Test Results

We can now determine the success of a test without needing the type of its result. To continue
working with the result of a test, it needs to be stored. With our state monad approach, we need to
define which components the state contains beforehand. It is therefore not possible to store the
results in different lists. To do this, we would need a way to change the amount of components of a
record during runtime. Our aim is therefore to store all test results in a single list. The problem
with this is, test results could have any type, and we can’t store values with different types in the
same list. This is where existential hiding comes into play.

In Haskell, which is a strictly typed language, every term needs to be given a valid type. In
order to create a list which contains values with different types, we can hide the type of values
using existential types. Existential type constructors, after taking an argument, do not have a type
argument in their type. Figure 7 shows the construction of an existential type. The type constructor
TestResult can take any argument with type a. The type of the variable hidden, even though it was
constructed with an Int, is just TestResult. It is visible that the information about the type of the
wrapped value has been “forgotten”. It has, in fact, really been forgotten. The TestResult wrapper
still points to a place in memory, meaning that the information is still there in the form of raw bits.
But all information which type that value had, is lost. This effectively allows us to store values
of different types in a list, without the need to explicitly state their type, by putting them into an
existential type wrapper. An example for this can be seen in fig. 8. The values 6, "foo" and True
are put into an existential wrapper TestResult. A list can be constructed from the resulting values,
where the information about the types is forgotten, resulting in a list with type [TestResult].

The drawback for this is, that in order to again gain access to the stored value, we need to assign
a type again. To do this, we need to coerce the original type. In Haskell we can use the unsafeCoerce
function for this. The coercion of these hidden types proved to be one of the biggest hurdles of this
thesis.

Existential hiding will assist in hiding the type of the test results. The recovering of the hidden
types is left to Haskells type inference system. To do this, we create an existential type TestResult,

10

f :: Int -> Int
f=id

x = f $ unsafeCoerce (head listOfValues)

Fig. 9. The coercion of a type that was lost when constructing a TestResult value. The value of x is 6

which we use to wrap test results. By passing whichever value is inside the wrapper into a testing
function, Haskell can infer its type, as the type signature of the testing function states the type of
its input.

To realize this type, unsafeCoerce comes into play, shown in fig. 9 To recover the data from a
list of existentially hidden values, here 1istOfValues, it is necessary to retrieve information about
the type. A developer can either know which type to retrieve and state it explicitly, or use type
inference. To showcase this, a dummy function f is defined. Here, the function f demands an Int
as its argument. This means, that if Haskell uses unsafeCoerce on the list head, the type inference
system knows, that the result must be an Int, otherwise f couldn’t be called on it. In other words,
the type system infers that the incoming value of a function should have a certain type. Then,
unsafeCoerce realizes that type, by interpreting the value with the “lost” type, as a value of the
inferred type.

With the problem of different type signatures out of the way, it is now possible to construct a
custom monad, that will handle saving our test results, recovering them when we need them, and
assist in modelling dependencies.

4 IMPLEMENTATION

In this section the details of the implementation are discussed. The code can be found in the GitHub
repository.?

4.1 The TestM Monad

The TestM monad is implemented as a monad stack of a reader monad transformer and a state
monad transformer. The TestState is a record with two components which will serve as the state.
The first component is a list with test results tests :: [TestResults]. The type TestResults is a
list of results of individual tests, type TestResults = [Maybe TestResult]. The second component
of our state is testSpecs :: Spec. We use this to accumulate Spec before running them with hspec
in the end. Spec can be sequenced using the sequence operator >>, which creates a new value with
type Spec that, when run with the hspec function, just executes the two sequenced Spec after each
other.
To add new tests to the state, the function

addTestResult :: MonadState TestState m => ([Maybe b], Spec) -> m ()

can be used. This function also takes the incoming Spec and just sequences is after the already
existing Spec in the TestState. It also adds the incoming test results with type [Maybe b] to the
end of the tests list. The test running functions, that will be talked about in the next section, then
return only the index this test got in the tests list. We can use this integer index to retrieve the
results of tests that already ran, or when we want to declare horizontal dependencies.

We also want to use a ReaderT which will allow us to set a certain configuration. There is one
configuration implemented as type Config in this thesis. It offers the two options DefConf :: Config

Zhttps://github.com/LukasProgress/interdependency-testing

https://github.com/LukasProgress/interdependency-testing
https://github.com/LukasProgress/interdependency-testing
https://github.com/LukasProgress/interdependency-testing

Designing a Haskell Library for Interdependency Testing 11

1 runTest :: (Eq a) => Monad m =>

2 Description —-— A Test Description

3 -> [a] —— A List of To-Test Values
4 -> (a -> Maybe [a], [Int]) —— The Dependency Tuple

5 -> (a -> m (Maybe b, Spec)) —— The Testing Function

6 -> TestM m Int —— Returns the ID of the Test

(a) The type signature of runTest

1 runTestFromResult :: (Eq a) => Monad m =>

2 Description

3 -> Int -— AnID for Test Results
4 -> (a -> Maybe [a], [Int])

5 -> (a -> m (Maybe b, Spec))

6 -> TestM m Int

(b) The type signature of runTestFromResult

Fig. 10. The type signatures of both testing running functions. The runTest function introduces new instances,
while the runTestFromResult reuses instances from existing test results.

and PendingConf :: Config. These will allow the developer using this library to decide, whether
they want to display only the tests that ran without problems, or include the ones for which the
dependencies were not fulfilled. The latter can be done with PendingConf, which will display all
these tests as pending.

In our testing monad we now stack the configuration and the state together in

TestM m a = ReaderT Config (StateT TestState m) a

An additional, variable monad m is included, which allows developers to implement a monad of
their choice in their testing functions. This is especially useful for running IO operations in the
testing functions. For this purpose, the TestM monad also implements MonadIO.

4.2 How to Run Tests

There are two functions that are able to run tests, i.e. that are test running functions. The runTest
and the runTestFromResult functions can both be used to run testing functions on to-test values,
taking dependencies into consideration. They differ in their purpose. Introducing new test instances
is done by a call of runTest. Whenever the user of this library intends to introduce a new list of
to-test values to the testing process, the runTest function has to be used. This also means that the
first call of a test running function always is runTest, because we need to introduce new instances
if there are none, to run tests at all. On the other hand, the runTestFromResult function builds tests
on already existing instances. This means, that it reuses the test results from tests that ran previously.

The complete type signatures for both of the test running functions can be seen in fig. 10. It can
be seen that the second argument is the only difference between these type signatures. A call of
runTestFromResult requires four arguments.

First, a description is given as String. The description will give this call of the test running
function a name. This name will be displayed in the terminal when we run the collected Spec values,
and the results of this test will be grouped under this description.

12

The second argument is an ID, given as an Int, that corresponds with an index in the tests list
of the TestState. The test ID is looked up in the list and resolved to a list of test results.

The third argument is the dependency tuple. It carries a function that calculates vertical de-
pendencies, as well as a list of integers which represent the IDs of the tests of the horizontal
dependencies. These dependencies are to be defined by the user of the library. In the case that a
test has no dependencies, the library offers the constant noDeps = (const [1, [1).

The fourth argument for runTestFromResult is the testing function. Here, the user passes a
function that accepts values that have the same type as the values behind the resolved test result
ID. This is essential, as we need to infer and coerce the type these values had before they were
wrapped in an existential type. Only if the types match, a test will run without error. The result of
this testing function is a tuple inside a monad m. The other specifications of testing functions were
described in section 3.2.

The technical difference between runTestFromResult and runTest lies in the second argument.
Because runTestFromResult reuses test results, it accepts an index to retrieve them from the test
state. The test results from the state are wrapped into the existential type TestResult. Before we can
pass them to the testing function, their type has to be coerced. In contrast, runTest was designed
to introduce a new list of instances to the process, so it accepts a list of to-test values that has
the type [Maybe al. The to-test values of that list can directly be passed into the testing function.
This difference requires us to write two different testing algorithm functions, one that works with
TestResult values, and one that works with “normal” values.

After taking dependencies into account and running the testing function with every to-test value,
by calling a testing algorithm function described in section 4.3, the results come back in form of
alist [(a, (Maybe b, Spec))]. The first value in this tuple, with type a, is the to-test value over
which the testing function was executed, the second value of this tuple is the result that the testing
function returned for this specific to-test value. The reason for that is, that we might run more tests
than entries in our list of to-test values, due to vertical dependencies. By attaching the original
value that was tested to the result, we can afterwards filter the results to match the original list of
to-test values.

The right side of the tuple is another tuple, containing a Maybe b and a Spec value. The first of
those two is the result of the test. The Spec contains a single Hspec test of this specific to-test value
with this specific testing function. As we get a list of these tuples, where the original to-test value
is attached to its result, we may speak of a result dictionary. It can be used to look up the result to a
specific to-test value. As mentioned, the results are filtered with the original list of to-test values.
To do this we look up all the elements of our original to-test list in the result dictionary, sorting the
results in the order of the to-test values in the same step. Depending on the configuration, the Spec
of tests, for which the dependencies failed, might also be dropped. In the end, the results and Spec
are written into the corresponding variables in the TestState.

Ultimately, both runTest and runTestFromResult return an integer ID, which can be used for
future tests. We can then use these IDs to give to-test values to runTestFromResult, or use them as
horizontal dependencies.

4.3 Testing with Dependency

We only want to run tests for instances where all dependencies are fulfilled. The dependencies
of an instance are fulfilled, if none of them have a Nothing as result. We first check horizontal
dependencies, and then vertical dependencies. Horizontal dependencies are checked in a method
we will call horizontal filtering. This means, that we set all to-test values, for which a horizontal
dependency was not fulfilled, to Nothing.

Designing a Haskell Library for Interdependency Testing 13

tv depl dep2 tv_deps
Just3 - Nothing
Just12 e Just "foo" Just "y"
Nothing - Just"bar"

v

Fig. 11. The list of to-test values (tv) and the two horizontal dependencies dep1 and dep2 at index produce a
list of to-test values with successful dependencies (tv_deps), by comparing their elements at every index i.

Figure 11 provides a graphical idea of how this is done. The tv column is the list of to-test values,
that was given to the function, while tv_deps on the right-hand side is the list of to-test values
after horizontal filtering, that will actually be tested. The two columns dep1 and dep2 represent the
horizontal dependencies declared by the user. The cells inside the columns all represent the test
results of single instances of a single test. In case that this would be a call of runTest however, the
tv column would be a list given by the user, instead of reused test results. Only the first 3 elements
of each list are shown, the dots in the lower half suggest that these lists may be of arbitrary, but
identical, lengths.

Here, a list of to-test values tv was given to the test running function, along with the horizontal
dependencies dep1 and dep2. The dotted lines suggest, that each instance corresponds to exactly
one index, and all lists that occur are arranged in a way so that the value at the index corresponds
to this one instance. If any entry in a dependency is Nothing, the dependency is not fulfilled. In
this case the index i in the resulting list of filtered to-test values tv_deps is set to Nothing,. If all
values x of an index in the to-test value list, as well as in all dependencies, are a Just x, the to-test
value is kept in the filtered list.

Since indices correspond to instances, we can use a rather easy approach of implementing the
horizontal filtering. In essence, it is a matrix transposition. As a matrix, imagine the columns of
fig. 11 next to each other. The leftmost matrix column are the to-test values, the others are the
horizontal dependencies. The rows of the matrix are then the ith element of every test, i.e. they are
all the same instance. For the transformations, the lists are aggregated at their ith entries into a new
list, and then check whether any entry at this index was Nothing. In that case either a dependency
was not fulfilled, or the entry in the to-test value list was already Nothing. Of lists that had no
Nothing we keep the head, i.e. the to-test value. This way, all to-test values, for which one or more
horizontal dependencies were not fulfilled, are set to Nothing, and will be skipped while running
the tests.

The resulting list is now passed into one of the functions that actually run tests, the test-
ing algorithm functions. There are depTesting and depTestingWrapped which are used by runTest
and runTestFromResult respectively. As mentioned, because of the difference of runTest and

14

1 depTesting :: Eq a => Monad m =>

2 [(a, (Maybe b, Spec))] —— A Result Dictionary

3 -> [Maybe a] —— The To-Test Values

4 -> (a -> [al) —— A Dependency Function
5 -> (a -> m (Maybe b, Spec)) —- A Testing Function

6 -> TestM m [(a, (Maybe b, Spec))]

(a) The type signature of depTesting

1 depTestingWrapped :: Eq a => Monad m =>

2 [(a, (Maybe b, Spec))] —— A Result Dictionary
3 -> [Maybe TestResult] —— The To-Test Values

4 -> (a -> [al) -— A Dependency Function
5 -> (a -> m (Maybe b, Spec)) —— A Testing Function

6 -> TestM m [(a, (Maybe b, Spec))]

(b) The type signature of depTestingWrapped

Fig. 12. The type signatures of both testing algorithm functions. The depTestingWrapped function handles
values wrapped in TestResult, while depTesting accepts a list of unwrapped to-test values.

runTestFromResult, we need two different testing algorithm functions. One that handles tests
that are wrapped in an existential type, and one that handles unwrapped values.

The purpose of both functions is running a testing function over every element of the list of
to-test values. At the same time, for every element the vertical dependencies are calculated and
tested beforehand. These two steps were not isolated for two reasons. First we want to keep track
over which values were tested, and reuse these gathered results, in case of duplicates. Secondly
the calculated vertical dependencies might have vertical dependencies again. So we use the very
same function to test all the to-test values, as well as their vertical dependencies. To implement
this “testing before testing” approach of vertical dependencies, we use recursion.

The type signature of both testing algorithm functions can be seen in fig. 12.

The first argument serves as an accumulator. It is a dictionary mapping to-test values to their
test results, a result dictionary. We utilize this to collect the results, but also to look up before
testing, whether we already know the result for a given to-test value, to prevent redundancy. When
the algorithm ends, i.e. when the end of the list of to-test values is reached, this result dictionary
contains all to-test values mapping to their respective results, and is returned.

The last argument of both functions is a testing function. This is a function defined by the user
of the library. In case of parse testing, this would be a function which takes the file name, reads its
content, and tries to parse that into a syntax tree. Then it checks whether the parsing was successful,
and returns this information along with the parsed tree. The details of what these functions look
like were discussed in section 3.2.

The third argument is the dependency function, which is used to calculate vertical dependencies
and also defined by the user of the library. It has the type a -> [a], which means the dependencies
for a particular to-test value are calculated as a list. If the result of the function is empty, the input
has no vertical dependencies.

Designing a Haskell Library for Interdependency Testing 15

The second argument of both functions is the list of to-test values, that was horizontally filtered.
For depTestingWrapped they all have the type Maybe TestResult, while for depTesting they have
the type Maybe b. The head element of the list, we call the current value. We recurse over this
list, looking at the current value and running our algorithm on it, before removing the current
value from the list, and running the function again on the tail. If the list is already empty, the result
dictionary is returned. If the current value is a Nothing, then the dependencies for this particular
instance already were not fulfilled. In that case, the testing algorithm function calls itself with the
rest of the list, which means that we simply skip this instance. If the current value is a Just x for
any x, the actual testing algorithm is used.

First, the current value is looked up in the result dictionary to determine whether the result
has already been calculated. This could happen either because the current value was a horizontal
dependency for another instance, or because the current value is a horizontal dependency that was
already evaluated for another to-test value. As we assume that duplicate to-test values result in
duplicate results, if we find an existing result, we can simply drop the current value and call the
testing algorithm function again with the rest of the list of to-test values.

If no result is found, the current value still needs to be tested. To do this, we first determine its
vertical dependencies by passing the current value as an argument to the dependency function.
If this function returns an empty list, it means there were no dependencies. In that case we can
directly run the testing function on the current value. After this, the current value and its result
can be attached to the result dictionary, and we recurse with the rest of the list.

If there are dependencies however, we want to check whether they are successful before executing
the test on the current value. In that case, the test algorithm function calls itself recursively. This is
the second way in which recursion is possible. We pass the already collected result dictionary, and
the dependencies as new to-test values. By recursing over the dependencies, we make sure that ev-
ery vertical dependency is tested before running the testing function with the current value. When
this recursive call returns, the results for all dependencies will have been collected in the result
array. We can then check the returned result dictionary, if all dependencies also were successful, i.e.
whether any of them returned a Nothing as test result. If they were not, the current to-test values
test result is also Nothing. If they were successful, we run the testing function with it. As we want to
keep the information about test results that we acquired during recursion, after running this testing
function we append the tested value and its result to the returned result dictionary. We then pass this
dictionary when calling the testing algorithm function again with the rest of the list of to-test values.

As mentioned, the two testing algorithms handle different types of to-test values. Therefore,
the way they call the testing function is slightly different. The depTesting function works with
to-test values that have the type Maybe a. It can therefore pass a current value x :: a directly into
a testing function f :: Monad m =>a -> m (Maybe b, Spec).

In contrast, depTestingWrapped works with to-test values that have the type Maybe TestResult.
Before being able to apply a testing function to a current value x :: TestResult the to-test value
needs to be unwrapped from the existential type wrapper. We use unsafeCorce to extract the values
hidden in a TestResult, and infer their type with help of the type inference system. By using a
testing function f :: Monad m =>a -> m (Maybe b, Spec) directly on the coerced value, Haskell
is able to infer, that the result of a call of unsafeCoerce should have the type a. The same unwrapping
takes place when vertical dependencies are calculated. Here, the to-test value is coerced when
passing it into the dependency functions. Mirroring this, if vertical dependencies are found, they
are all wrapped into the TestResult existential type constructor, before they can be passed as the
new list of to-test values in the recursion.

16

Both functions return a result dictionary with all values that were tested. This does not include
information whether these results stem from to-test values or from their vertical dependencies. For
this purpose the function that called this algorithm again filters out the results that we originally
wanted. This process was described in section 4.2.

5 DISCUSSION AND OUTLOOK

During the development of this library the biggest problem that arose was that of typing. It was
intended to extend the functionality to be able to use all horizontal dependencies as arguments
for the testing function, not just a single list of to-test values. But, as we hide the types of the test
results, when trying to retrieve them from the TestState, we cannot predict which types they will
have. To do this, we rely on the testing function, and coerce the type inside TestResult at exactly
the moment we call the testing function on it. As Haskell’s type inference system knows which
type the argument for the testing function has, it can infer which type to give to the value inside the
TestResult wrapper. At the same time there was no obvious way to abstract the type for the testing
function that is passed into runTest and runDependentTest enough, so the amount of arguments
was variable. This means that it was not possible to declare a type for the testing function that was
always correct. We have, however, in this thesis already found a way to circumvent such problems.
When the TestResults list had to deal with different types, we used an existential type to hide
them. It would therefore be necessary to also hide the type of the testing function to implement this
feature in our current framework. The problem with this arises, when trying to apply the hidden
function to hidden arguments. The type inference would need to infer both the function’s and the
arguments’ type. As one relies on the knowledge of the other, this was not possible to implement
in this way.

So, what could be done to circumvent this problem? It is not possible to store a type, and always
associate a list of test result with its types. An idea was to put the test results in an existential
wrapper and tuple them with their own coercion function. This, however, was also doomed to
failure, as Haskell expects us to coerce the type inside the wrapper before putting it in the function.
The functionality of being able to use values of the horizontal dependencies was not observed as
necessary, however. If this necessity should arise, it can be circumvented by, for example, returning
tuples as results in the testing functions.

There are more features that were not implemented. One of them was more configuration possi-
bilities. Specifically, the ability to not only display the results of the to-test values that were an input,
but all the tests that ran. That means that also all the values that were tested as vertical dependencies
would be shown on the terminal for every test. Another feature that was not implemented but may
be very interesting for the future would be adding instances to an already existing list of test results.
Right now, it is only possible to introduce an entirely new list of to-test values, using runTest. All
of these to-test values form their own test instances. With this feature, we may add an arbitrary
amount of instances to an already existing list of test results. Ideally, this would mean, that we
add results, that this list of to-test values already calculated in previous tests. This could only be
achieved, if we add to-test values of the “root type”, i.e. to-test values, that have the same type as
the instances of this list had, when they were added in a call of runTest. Then, we would need to
keep track of the test functions that were used on these instances. When adding new instances,
they need to also run all of these tests we kept track of. Only that way all instances have test results
in every previous test. Alternatively one could think about how to link instances more efficiently
than by indices in a list. This could enable us to add instances at any point in the testing process,
without the need to run all previous tests on them. This is because we would not have out of bounds
indices when using horizontal dependencies.

Designing a Haskell Library for Interdependency Testing 17

Future developers of this library may then think about how to handle horizontal dependencies
for values that did not exist when that dependency was evaluated. Maybe, this would also be a way
to extend the configuration with multiple possibilities of how to handle these cases.

The library was integrated in the Duo language projects’ test suite, and made it possible to
prevent redundant testing. It also helped to better isolate errors, as failed dependencies were
not propagated throughout the testing process anymore. In the future, developers of the Duo
language, or of any other project that use this library, might benefit from being able to model
interdependencies between tests.

Designing a Haskell Library for Interdependency Testing

REFERENCES

Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan Hao, and Lu Zhang. 2020. A Survey of
Compiler Testing. ACM Comput. Surv. 53, 1, Article 4 (feb 2020), 36 pages. https://doi.org/10.1145/3363562

HSpec. 2011. Writing Tests with HSpec. https://hspec.github.io/writing-specs.html [Online; accessed 14-May-2023].

Alexander S. Kossatchev and Mikhail Posypkin. 2005. Survey of compiler testing methods. Program. Comput. Softw. 31, 1
(2005), 10-19. http://dblp.uni-trier.de/db/journals/pcs/pcs31.html#KossatchevP05

https://doi.org/10.1145/3363562
https://hspec.github.io/writing-specs.html
http://dblp.uni-trier.de/db/journals/pcs/pcs31.html#KossatchevP05

SELBSTANDIGKEITSERKLARUNG

Hiermit versichere ich, dass ich die vorliegende Bachelorarbeit selbstindig und nur mit den
angegebenen Hilfsmitteln angefertigt habe und dass alle Stellen, die dem Wortlaut oder dem
Sinne nach anderen Werken entnommen sind, durch Angaben von Quellen als Entlehnung ken-
ntlich gemacht worden sind. Diese Bachelorarbeit wurde in gleicher oder ahnlicher Form in keinem
anderen Studiengang als Prifungsleistung vorgelegt.

Ort, Datum Unterschrift

	Contents
	1 Introduction
	2 Preliminaries
	2.1 Monads in Haskell
	2.2 Hspec

	3 Main Ideas
	3.1 A Testing Monad
	3.2 Testing Functions
	3.3 Different Types of Dependencies
	3.4 Maybe as Results
	3.5 Existential Hiding of Test Results

	4 Implementation
	4.1 The TestM Monad
	4.2 How to Run Tests
	4.3 Testing with Dependency

	5 Discussion and Outlook
	References

